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Abstract The N = 4 periodic closure of Ihe factorization chain is considered. I1 is shown that 
the nonlinear operator algebra corresponding to th is  closure wn be transformed into the quadratic 
Hahn algebra. As a result. the three-term recurrence coefficients for the Hahn polynomials 
provide a special realization ofthe N = 4 periodic factorization chain. 

The factorization method was developed by Schrodinger as a convenient tool for solving 
the eigenvalue problem 

for the particular potentials u(x ) .  Within this method, one replaces (1) by the chain of 
problems 

Lj@,(x) =A@,@) j=0,&1,2=2, ... (2) 

whose Hamiltonians Lj satisfy the intertwining relations 

L.A+ J I -  - A + L .  j J+ 1 

L~ = A;A,: + (4) 

A ~ + + ~ A ; . ~  + A ~ + ~  = A ; A ; + L ~ .  (5) 

A r L .  J I  = Lj+)A,T (3) 

where Aj' = f d / &  + f , ( x ) .  Resolution of the constraints (3) leads to the representation 

where Aj are some constants, and to the abstract factorization chain [l] 

Equivalently, one may start from factorization (4) and use (5) for the definition of the 
Hamiltonian Lj+l which automatically guarantees relations (3). In general, the operators 
AT and AI: need not be Hermitian conjugates of each other. A useful fact is that for the 

5 On leave of absence from the Institute for Nuclear Research, Russia Academy of Sciences, Moscow, Russia. 
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special solutions of the factorization chain (5), the constants A, provide discrete spectra of 
the Hamiltonians Lj. 

Among the various reductions of the chain (5), there is a very simple reduction fixed 
by the following periodicity condition: 

Lj+N = Lj f I-1 h j + N  = hj f f i  (6) 

where p is some constant. It has been investigated in detail in [2] for the case when AT are 
the first-order differential operators and Lj = -d2/d.r2 + uj(x).  A more general periodic 
closure was considered in [3], namely 

(7) L ~ + N  = U'LjU + p 

Bf = ATA; ... AiU' 

h j + ~  = Aj + p 

where U is a unitary shift operator. If one defines the operators L L I ,  

B- = U A i A i - ,  . . . A ;  (8 )  

the conditions (7) then imply that 

[ L ,  B*] = fpB* 

N 
B-B+ =  CL + p - it). 

k= I 

The operators L,  B* therefore form a polynomial algebra: for N = 1 it is the oscillator 
algebra and for N = 2 it coincides with su( l .1 ) .  

We consider here the case when N = 4 and show that the corresponding symmetry 
algebra can be transformed into the so-called Hahn algebra Q H ( 3 )  considered in [4,5]. 

For this, let us introduce the operators 

K , = L  

K~ = B+ + B- + ~ L ~ + B L +  Y (10) 
K3 = p(B+ - B-)  

where a, ,4 and y are some constants to be determined. From (10) and (9), we obtain 

[KI, K21= K3 (1 1 4  

[K3,  K11= $(OrK: t BKI + Y - K2)  OW 
[ K z ,  K31= 2 p [ B - ,  B'I - 2Or 2 2 3  p K1 - 3a,4pzK: + Orp2(Ki, Kzl+ ,4p2Kz 

- (2ya + B W K I  - BYW2 (1W 

where (K1, K z )  = K I K ~  + K ~ K I .  The commutator [ B - ,  B+] can be found from (9) 

[B- .  B+l = p(4K: + (6p - 3si)K: + (4p2 - 3 ~ ~ 1  + 282)Ki + p3 - /L'SI + ~ S Z  - ~ 3 )  

(12) 
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where 
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are the standard symmetric functions. 
From (1 IC) and (12), we see that if 

a = f 2  p = f 2 p r s ]  

the terms - K: and - K: on the RHS of (llc) disappear and we obtain 

[KI 1 & I =  K3 

[K3,  KII = A K :  + BKI  + CzKz + D2 

IKz, X31= A W I ,  Kz) + B X z  + CIKI t DI 

where the structure constants A, B ,  C; and D, are 

2 A = f2p2 B = ffiZ(2fi -SI) , Cz = -p D Z = Y Y  

CI = pZ(4p2 - 2 p ~ 1  -sf+4sz F4y) Di = 2pz(p3  SI + p z  -a F Y ( ~  - ~1/2)). 

The algebra with the commutation relations (15) is called the Hahn algebra Q H ( 3 )  [4,5]. 
The general symmetry algebra (9), for N = 4, can thus be reduced to the Hahn (quadratic) 
algebra QH(3) .  

There are many interesting consequences that follow from this observation. Let us list 
some of them. 
(i) If all zero modes of the operator 3- satisfy the necessary boundary conditions, then 

the discrete spectrum of the operator KI contains four arithmetic series (we assume that 
each A,: has only one zero mode). This is a simple corollary of (9). 

(ii) A less obvious consequence of (15) is that the specmm of K2 may be either finite 
and quadratic in the number of level, or may contain both discrete and continuous parts. 

(iii) ?he overlaps between eigenstates of the operators K1 and KZ are expressed in a 
special case in terms of the ordinary finitsdimensional Hahn polynomials. 

One can thus expect that the Hahn polynomials provide a special realization of the 
N = 4 closure condition (7). Investigation of corollaries of facts (i)-(iii) for the realization 
of algebra (9) with the help of the standard Painlev6 equations [Z] lies beyond the scope. of 
the present paper. Let us consider instead the following realization of the operators A;: 

A,:ln) = Q,(j)ln - I )  + In) Ail.) = & ( j ) l n )  +In + 1) (16) 

where In) is some abstract basis of states. The operators Lj then become finite-difference 
Schrodinger operators 

Ljln) = In+ 1) +u, ( j ) ln  - 1) +&&)In) (17) 

where 

uno’) = Q.o’)%-l(j) b d j )  = QdA f R d j ) + i j .  (18) 
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The refactorization condition (5) leads to the following discrete dressing chain [6,7]: 

Q d j  + l ) & - ~ ( j  + 1) = Q n ( j ) R n ( j )  

Q J j  + 1) + R n ( j  + I )  = Q,+I(~) + R A j )  + Aj -A j+r ,  

As shown in [7], equations (19) define a special form of the discrete-time Toda lattice. 

(19) 

We impose the following closure condition 161: 

R d j  + 4) = R.+zO') Q A j  +4) = Q.+dj) Aj+4 - Aj = I.L (20) 

which corresponds to (7) with the operator U acting as the shift operator 

Uln)  = In + 2). (21) 

In general, the analysis of conditions (19) and (20) leads to complicated nonlinear difference 
equations which can be considered as difference analogues of the Painlevt equations (see 
[2,6]). We propose here a direct method for showing how the recurrence coefficients of the 
Hahn polynomials arise as special solutions of these conditions. 

The finite-dimensional Hahn polynomials of the discrete argument x 

obey the three-term recurrence relation [8] 

with 

(n + o r + , 9 +  I ) (n  + a +  I)@" 1 - n )  
(2n +%+ p +~1)(2n +CY + ,9 +'2) B. = 

n(n +,9 ) (n  + a  + B + N) d -  " -  (2n+or+,9)(2n+or+,9+1) 

where 

0 S x , n  4 N - I .  (2-5) 

A renormalization of the polynomials allows one to rewrite relation (23) in the form 

% t l @ " + l  + @ n - l + c n @ " = x @ a  (26) 

u n ( ~ ,  A N) = dng,-i 
(27) 

c n ( ~ ,  ,9, N )  dn + gn. 

Consider the eigenvalue problem for the operators Lj (17) 
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The coefficients @, , ( j )  are found as solutions of the discrete Schrodinger equations 

ua+l(j)?bn+l(j) + h - l ( j )  + bn(j)!h(j)  = x @ d j ) .  

wavefunctions @ ( j ) .  From the action of operators A,:. A,:[@), cx 
The relations (5) now determine a chain of discrete Darboux transformations for the 

one finds 

?bdj  + 1) = @ d j )  + Qa+1( jhh+i ( j )  (29) 

b.(j + 1) = b.( j )  + Q,+l ( j )  - Q d j )  (306) 

where new eigenfunctions @"(j + 1 )  obey a discrete Schrodinger equation with recurrence 
coefficients u . ( j + l )  and b , ( j + l )  and the same eigenvaluex. Note that the wavefunction's 
mapping given in (29) is defined up to a normalization factor; we are here only interested 
in the transformation of recurrence coefficients. In this context, the closure condition (20) 
means that after four successive Darboux transformations. the discrete potentials u , ( j )  and 
b , ( j )  should be recovered up to the shift n + n + 2 and the addition of p to bn. 

In the case of the Hahn polynomials, one can find at least four simple solutions to 
equations (19) that are analytical in j .  We shall call these factorization wisps. They are 
presented below with the normalization u, ( j  = 0) = u.(a, p,  N ) ,  b , ( j  = 0) &(a, p, N ) .  

(i) The first wisp is 

u.( j )  = u . ( a j , B . N )  b . ( j ) = c & j , B . N )  

where 

o r j = a + j  h I -  - - a - j - 1 .  (31) 

This solution corresponds to the following transFormation of the recurrence coefficients for 
the Hahn polynomials: 

un(a, B, N )  -+ u n ( a  + 1 ,  B. N )  

cn(a, B. N )  -+ Cn@ + 1, B, N ) .  

(ii) The second wisp is 

n(n + a  + B j  + Nj)(n + 4 
(2n + a + &)(2n +a! + B j  + 1) Q n U ) = -  
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where 

pj = ,9 + j Nj = N - j Aj  = N - j - 1. (33) 

One step of this transformation corresponds to the following change of the recurrence 
coefficients: 

(iii) The third wisp is 

u, ( j )  = v,+j (aj ,  A N j )  

aj = w -  j Nj = N +  j - - j - 1 .  
h ( j )  = Cn+j(ffj, A NI) - j 

1 -  

Note tt only in this case does the Darboux transformation lead to an additive 
C" . 

:tor for 

None of the above wisps satisfy the closure condition (20). However, there is a lot of 
freedom in the definition of the discrete time evolution of the recurrence coefficients. One 
can consider an evolution which mixes up the four wisps in an arbitrary manner. Consider, 
for example, the following sequence of Darboux transformations: 

(i) + (ii) 4 (iii) -+ (iv). (36) 

It is easy to see that it leads to the following transformation of the recurrence coefficients 
of the Hahn polynomials: 



Letter to the Editor L675 

and that we find, in fact, the N = 4 periodic closure conditions (20) with p = -1. The 
periodicity conditions (20) are thus satisfied when the discrete time j has a different meaning 
than in wisps (i)-(iv), enumerating rather the steps in (36). Evidently, there are other 
combinations of (iHiv) that lead to periodic closure, for instance, the cyclic permutation 
of the steps in (36) gives the same result. 

To conclude, we have proved that the Hahn polynomials provide a specific realiition 
of the factorization chain with the N = 4 periodic closure condition (20). The symmeby 
algebra (9) is in this case equivalent to the quadratic Hahn algebra Q H ( 3 ) .  This gives one 
more example of systems associated with classical orthogonal polynomials that belong to 
the infinite family of Hamiltonians with formal discrete spectra composed from an arbitrary 
number of arithmetic or geometric series appearing after the (q-)periodic reduction of the 
discrete dressing chain [6]. 
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